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Abstract. The probability density and distribution function of the sum of N isotropic 
random vectors is studied for the general case in which the probability density of the lengths 
of the individual vectors vanishes identically outside a finite interval, The probability density 
function is expressed in a Fourier sine series whose coefficients are the sampled values of the 
characteristic function. Typical numerical calculations are summarized in graphical form 
for the case where the lengths ofthe vectors obey a rectangular probability density. Sampling 
expansions are also developed for the moments and the distribution function. 

1. Introduction 

The problem of isotropic random flights, besides being interesting in its own right, has 
numerous applications in the physical sciences (Barber and Ninham 1970, Flory 1969). 
In the now standard situation each random vector is taken to be an independent random 
variable having f ixed length and random orientation (isotropic). Under these circum- 
stances, the determination of the probability density of such finite sums of random 
vectors follows a standard formal procedure. The characteristic function for an 
individual vector is evaluated and since the vectors are independent random variables, 
the characteristic function of the sum is the product of the characteristic functions. 
Having determined the total characteristic function one merely takes its Fourier trans- 
form to obtain the probability density of the sum in the form of an  infinite integral 
possessing a rapidly oscillating integrand. Such an integral does not lend itself to 
explicit general evaluation or numerical computation. 

Should the lengths of the vectors also be random variables, then the situation is 
decidely unfavourable because the characteristic function of the sum is generally a 
product of complicated integrals. Obviously the computational problem is orders of 
magnitude more involved than in the simple fixed-length case should one attempt 
brute force. 

The purpose ofthe present paper is twofold. First, to present a computational scheme 
based upon the sampling theorem for the evaluation of the probability density directly 
in terms of sampled values of the total characteristic function. This method is ideally 
suited to automatic computation and is capable of reasonable accuracy (4 or 5 digits) 
with little effort. Second, to utilize this scheme to study the problem of chains of vectors 
each vector having random length. 

t Also at Bolt Beranek and Newman Inc, Cambridge, Massachusetts 02138. 
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2. Formal solution 

The length of the chain is given by the vector 
N 

n =  1 

where the Y, are statistically independent vectors having isotropic probability density 
functions 

(2) 

where r ,  E I Y , ~ .  We leave W(r,,), the probability density function of the length of r , ,  
unspecified at present. 

1 
W(rn) = W(~n)W(4n)w(l~nl) = W(r,) 

The characteristic function of W,(r) is 

where p 5 IpI. Since the individual vectors are statistically independent, the character- 
istic function of their sum is the product of their characteristic functions 

N 

A N ( p )  = n An(p). 
n =  1 

Consequently the probability density function of the total sum is 

(4)  

where R = IRI. 

decsity function 
Rather than deal with W, itself, we choose to  work with a scalar quantity, the radial 

j k ( R )  = 47CR2WN(R) (6) 
which is the probability that R assumes a given magnitude irrespective of the direction 
of the chain displacement vector R. 

The analysis thus far has been perfectly general but we now place a restriction on 
W(r,) and require that it vanish identically when r exceeds a fixed j ini te  value, say fi ,  : 

W(r,) = 0 r ' P,.  (7 )  
Such a requirement is a perfectly reasonable one for the class of physical problems in 
which we are interested; after all individual bond lengths of the freely-rotating polymer 
chain are finite. Since W(r,) vanishes identically outside a compact region, its Fourier 
transform, the characteristic function A&), is therefore a bandlimited function. Now the 
products of bandlimited functions are also bandlimited functions so that A,,@) is 
bandl im ited with 

This suggests that we employ a sampling theorem to evaluate f N ( R )  in terms of sampled 
values of A N ( p )  in place of direct evaluation of equation ( 5 ) .  
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Let us write our basic equations in the form 

? X  

f,v(R)R - = ; j (pA,(p))  sin Rp d p  
0 

 PA,^(^) = joR" (j,,,(R)R- ') sin pR d p  

and  expand (jy(R)R- ' )  in the fundamental interval (0, RN)  

i= 0, elsewhere. 

(9) 

The  Fourier coefficients j ,  can be written directly in terms of the sampled values of 
A,v (p )  by virtue of equation (10): 

Consequently 

I= 0, elsewhere. 

The smoother f,v(R), the more rapid is the convergence of its Fourier series expansion. 
Since j JR)  must integrate to  unity we have a convenient check on the magnitude of 

A,(mrr/R,%,): 

jOr j,(R) dR = joR'v j,,,(R) dR = 1 

which implies 

The radial distribution function F,v(R'), which is the probability that R' < R,v, is 

F.JR') = /oR'j,y(R) dR.  

Upon performing the required manipulations, we have 

I= 1, R' > R, 

where J 3  2(x) is the Bessel function of order 1. 
sampling series coefficients 

The moments o f  the radial density function are also easily obtained in terms of the 
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where k = 1,2, .  . . , and 
m n  

g,(k) = x k +  ' sin x dx. 
0 

Sinceg,(k) is independent of fN(R), the moments can be calculated without the necessity 
of resorting to new integrations each time k is changed. The first few gm(k) are : 

gm( 1) = ( - 1 y +  { (m7c)2 - 2} - 2 

gm(2) = (-l)m+'{(m7c)3-6m~} 

g,(3) = (-1)~"{(m7c)4-120(m7c)2+24}+24 

gm(4) = ( -  I),+ ' { ( m ~ ) ~  -20(mn)~ + 120mn). 

3. Fixed lengths 

If the lengths are taken to be fixed quantities p,, then 

with the result that the characteristic function becomes 

so that the radial density function reads 

This is the integral solution originally obtained by Rayleigh (1919). Even this case has 
not been studied when p1 # p2 # . . . # pN. 

However Rayleigh evaluated the integral explicitly for N = 2,3,4,6 in the special 
case of equal lengths. It was left to  Treloar (1946) to  obtain an exact solution of equation 
(3.3) for equal lengths. His solution, although simple looking, is relatively difficult to 
evaluate because &(R) undergoes discontinuous changes in slope in the fundamental 
interval (0, RN), the number of changes depending on N .  Furthermore fN(R) is expressed 
in terms of polynomials in R with a different polynomial in each subinterval between 
discontinuities in slope. For example 

= (16p5)-'(5p5R2- R4), Rc I ,  
f5(R) = (48p5)-'(-5p3R+30B2R2- 15pR3+2R4), Rc I ,  (24) 1 = (96B5)-'(125P3R-75f12R2 + 15bR3-R4), RE I ,  

where I ,  is the interval (0 6 R 6 p), I ,  is ( p  < R 6 3j) ,  and I ,  is (3p 6 R 6 5g) .  
The complexity and number of these polynomials increases with N .  

This fact lead Jerrigan and Flory (1969) to evaluate the integral in equation (23) by 
quadrature, again for equal displacement lengths. No details of the actual integration 
procedure are given in their paper but the fact that equation (23) has an  infinite interval 
of integration and a rapidly fluctuating integrand mitigates against any reasonable 
accuracy unless a very high order quadrature formula is employed. 
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We have calculated fN(R) for equal displacement lengths using the sampled series 
representation with fifteen terms in the series. The numerical results for N = 2 , 3 , .  . . , 8  
were checked against the explicit expressions obtained by Vincenz and Bruckshaw 
(1946) who were unaware of Treloar’s previous solution. Reference is made to figure 1 
of their paper for curves off,(R). For some further work on this special case, see the two 
recent papers by Dvorak (1972a, b). 

Even though we take unequal displacements, the resultant behaviour of f s ( R )  is 
qualitatively similar to that of equal displacement lengths provided N 3 4 (see figure 1 
for a typical situation). The case N = 2 (PI P2) was given by Rayleigh and is 

0 < R < P 1 - 8 2  

81 - 

i = 0, R ’ P1 + P 2  

The sampled series representation for this case is not particularly useful because f i ( R )  
is discontinuous giving rise to  a Gibbs phenomena if we attempt numerical computation. 
The reason thatf,(R) is zero for P1 # /I2 is obvious. When N = 3 theauthor hasattempted 
an explicit solution but was only able to derive one for the case 

it is: 

where 

B, = 

Thus f 3 ( R )  is continuous in the basic interval but possesses three discontinuities in slope 
when P1 # /j2 # j3 compared to  only one when B ,  = P 2  = P 3 .  However only two of 
these discontinuities in slope are strong (see figure 2 ) .  The sampled series representation 
of f3(R) was also employed as a numerical check with excellent results. 

I t  is in the calculation of the radial distribution function FN(R’) that the power of the 
sampled series representation is displayed. Even in the simple case of equal lengths for 
which we have explicit formulae it  is not a simple feat to work through the integration 
ofall the sets ofpolynomials over all the necessary subintervals. However the calculation 
according to equation (17) is carried out independently of the subintervals between 
discontinuities in slope. Furthermore since the series for F,(R) is an integrated version 
of the series for f,(R) i t  converges more rapidly than that of fN(R). 
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R 

Figure 1. Radial density f 5 ( R )  for chain of  five vectors of fixed length: curve A p ,  = p2  = 1, 
p3 = p4 = p 5  = 0.5; curve B p1 = . . . = p s  = 1. 

R 

Figure 2. Radial density f 3 ( R )  for chain of three vectors of fixed length: curve A p l  = 1, 
p2 = 0.75, Pa = 0.50; curve B P ,  = p2 = p3 = 1. 

This brings us to the practical problem of ascertaining the number of terms in the 
sampled series representation to achieve a prescribed accuracy. Unfortunately only the 
global error can be specified not the local error since we are dealing with Fourier series. 
Equation (15) is a constraint upon the sampled values of A ,  and can serve as a reasonable 
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indicator of theglobalerror. This point is illustrated in table 1 where we list thenumerical 
values of A ,  for N = 3 , 4  and equal unit lengths. Only the first few terms are of any real 
consequence. The last three figures in each column represent the number of terms that 
are summed in equation (15). 

Table 1. Numerical values of the first nine sampled values of A ,  for A’ = 3,4  where all 
displacement lengths are unity 

0,565596 
0,070699 
0~0oO000 

-0,008837 
-0,004525 

o.oooo00 
0.00 1649 
0.001115 
O~OOoO00 
0,494897 
0,499209 
0.499753 

0.657023 
0,164256 
0.0081 11 
0~00ooo0 
0@01051 
04302028 
0000274 
0~00ooo0 
0~000100 
0,500878 
0.501929 
0.500275 

4. Random lengths 

We are particularly interested in the case where each random length obeys a rectangular 
density : 

i =  0, elsewhere 

where f i n  isfinite. Consequently the characteristic function of the nth vector, by virtue 
of equation (3), becomes 

where Si(x) is the sine integral ofargument x. As a,, -+ 8, then A,(p) tends to the expression 
given in equation (22) for fixed length. Since A,(p)  is a bandlimited function, we can 
apply the formulae derived in Q 2 .  

Before presenting any numerical results for this case let us look at  the asymptotic 
behaviour of f,\.(R) as N is taken to be very large. The main contribution to  the integral 
on the right-hand side of equation (5) comes from A,,(p) evaluated in the vicinity of the 
origin. Now when p is made very small in equation (28), i t  is a simple matter to prove 

so that 
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To evaluate fN(R),  we merely substitute equation (30) into equation (9),  the final result is 

where 

This is the well known Maxwell density function. 

becomes 
If all the vectors possess the same length density functions, then a, = a, P, = B and o2 

o2 = ;N(a2+aB+P2).  (33) 

Now if a + P ,  then o2 = NP2/3  (known result for fixed equal lengths) ; however if a = 0, 
then o2 = NP2/9  which is three times smaller. This is simply a manifestation of the 
tendency of fN(R) to weigh against even moderately large lengths. Furthermore the 
approach to this limiting density is most rapid for a = 0 as we will see from the numerical 
data ; in fact, for a value of N as small as 4, f N ( R )  appears maxwellian for all practical 
purposes. 

Because ofthe limitless combinations ofparameters, we haveconfined our calculations 
to the special case of equal rectangular densities so that a1 = a2 = . . . = aN = a, 

= f12 = . . . = BN = j?, and taking P = 1 without any loss of generality. The final 
curves for N = 3 ,  6 are shown in figures 3 ,  4. The curves marked A correspond to 
o! = 0 and even for N = 3 the radial density looks maxwellian. 

R 

Figure 3. Radial density f3(R) for chain of three vectors having random lengths: curve A 
ct = 0, p = 1 ; curve B a = 0.25, /l = 1 ; curve C c( = 0.50, jj = 1 ; curve D [x = 0.75, p = 1 ; 
curve E c( = 0.99, p = 1. 
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Figure 4. Radial density f,,(R) for chain of six vectors having random lengths: curve A 
x = 0, p = 1 ; curve B r = 0.25, j = 1 ; curve C r = 0.50. j = 1 ; curve D x = 0.75. = 1 : 
curve E x = 0.99. /% = 1. 

Since the present paper is concerned with general formalism, we d o  not feel i t  
necessary to continue with examples. The mathematical procedure is now perfectly 
straightforward and the reader should have no  difficulty working out any combinations 
of interest to him. 
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